pima-indians-diabetes.csv
In [45]:
import csv
import math
import random
In [69]:
def loadCsv(filename):
lines = csv.reader(open(r'C:\Users\huzaifa\Downloads\pima-indians-diabetes.csv'))
dataset = list(lines)
for i in range(len(dataset)):
dataset[i] = [float(x) for x in dataset[i]]
return dataset
In [70]:
def splitDataset(dataset, splitRatio):
trainSize = int(len(dataset) * splitRatio)
trainSet = []
copy = list(dataset)
while len(trainSet) < trainSize:
index = random.randrange(len(copy))
trainSet.append(copy.pop(index))
return [trainSet, copy]
In [71]:
def separateByClass(dataset):
separated = {}
for i in range(len(dataset)):
vector = dataset[i]
if (vector[-1] not in separated):
separated[vector[-1]] = []
separated[vector[-1]].append(vector)
return separated
Calculate Mean¶
In [72]:
def mean(numbers):
return sum(numbers)/float(len(numbers))
Calculate Standard Deviation¶
In [73]:
def stdev(numbers):
avg = mean(numbers)
variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers)-1)
return math.sqrt(variance)
Summarize Dataset¶
In [74]:
def summarize(dataset):
summaries = [(mean(attribute), stdev(attribute)) for attribute in zip(*dataset)]
del summaries[-1]
return summaries
Summarize Attributes By Class¶
In [75]:
def summarizeByClass(dataset):
separated = separateByClass(dataset)
summaries = {}
for classValue, instances in separated.items():
summaries[classValue] = summarize(instances)
return summaries
In [83]:
def calculateProbability(x, mean, stdev):
exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2))))
return (1/(math.sqrt(2*math.pi)*stdev))*exponent
Calculate Gaussian Probability Density Function¶
In [84]:
def calculateClassProbabilities(summaries, inputVector):
probabilities = {}
for classValue, classSummaries in summaries.items():
probabilities[classValue] = 1
for i in range(len(classSummaries)):
mean, stdev = classSummaries[i]
x = inputVector[i]
probabilities[classValue] *= calculateProbability(x, mean, stdev)
return probabilities
Make a Prediction¶
In [85]:
def predict(summaries, inputVector):
probabilities = calculateClassProbabilities(summaries, inputVector)
bestLabel, bestProb = None, -1
for classValue, probability in probabilities.items():
if bestLabel is None or probability > bestProb:
bestProb = probability
bestLabel = classValue
return bestLabel
In [86]:
def getPredictions(summaries, testSet):
predictions = []
for i in range(len(testSet)):
result = predict(summaries, testSet[i])
predictions.append(result)
return predictions
get accuracy¶
In [87]:
def getAccuracy(testSet, predictions):
correct = 0
for x in range(len(testSet)):
if testSet[x][-1] == predictions[x]:
correct += 1
return (correct/float(len(testSet)))*100.0
In [102]:
def main():
filename = 'pima-indians-diabetes.csv'
splitRatio = 0.7
dataset = loadCsv(filename)
trainingSet, testSet = splitDataset(dataset, splitRatio)
print('Split {0} rows into train = {1} and test = {2} rows'.format(len(dataset),len(trainingSet),len(testSet)))
#prepare model
summaries = summarizeByClass(trainingSet)
#test model
predictions = getPredictions(summaries, testSet)
accuracy = getAccuracy(testSet, predictions)
print('Accuracy: {0}%'.format(accuracy))
main()
In [103]:
#
In [104]:
from sklearn import datasets
from sklearn import metrics
from sklearn.naive_bayes import GaussianNB
In [110]:
dataset = datasets.load_iris()
In [111]:
model = GaussianNB()
model.fit(dataset.data, dataset.target)
Out[111]:
In [112]:
model = GaussianNB()
model.fit(dataset.data, dataset.target)
Out[112]:
In [113]:
expected=dataset.target
predicted=model.predict(dataset.data)
In [114]:
print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
In [ ]:
Comments
Post a Comment