pima-indians-diabetes.csv

pima diabetes analysis
In [45]:
import csv
import math
import random
 
 
In [69]:
def loadCsv(filename):
    lines = csv.reader(open(r'C:\Users\huzaifa\Downloads\pima-indians-diabetes.csv'))
    dataset = list(lines)
    for i in range(len(dataset)):
        dataset[i] = [float(x) for x in dataset[i]]
    return dataset
In [70]:
def splitDataset(dataset, splitRatio):
    trainSize = int(len(dataset) * splitRatio)
    trainSet = []
    copy = list(dataset)
    while len(trainSet) < trainSize:
        index = random.randrange(len(copy))
        trainSet.append(copy.pop(index))
    return [trainSet, copy]
In [71]:
def separateByClass(dataset):
    separated = {}
    for i in range(len(dataset)):
        vector = dataset[i]
        if (vector[-1] not in separated):
            separated[vector[-1]] = []
        separated[vector[-1]].append(vector)
    return separated

Calculate Mean

In [72]:
def mean(numbers):
    return sum(numbers)/float(len(numbers))

Calculate Standard Deviation

In [73]:
def stdev(numbers):
    avg = mean(numbers)
    variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers)-1)
    return math.sqrt(variance)

Summarize Dataset

In [74]:
def summarize(dataset):
    summaries = [(mean(attribute), stdev(attribute)) for attribute in zip(*dataset)]
    del summaries[-1]
    return summaries

Summarize Attributes By Class

In [75]:
def summarizeByClass(dataset):
    separated = separateByClass(dataset)
    summaries = {}
    for classValue, instances in separated.items():
        summaries[classValue] = summarize(instances)
    return summaries
In [83]:
def calculateProbability(x, mean, stdev):
    exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2))))
    return (1/(math.sqrt(2*math.pi)*stdev))*exponent

Calculate Gaussian Probability Density Function

In [84]:
def calculateClassProbabilities(summaries, inputVector):
    probabilities = {}
    for classValue, classSummaries in summaries.items():
        probabilities[classValue] = 1
        for i in range(len(classSummaries)):
            mean, stdev = classSummaries[i]
            x = inputVector[i]
            probabilities[classValue] *= calculateProbability(x, mean, stdev)
        return probabilities

Make a Prediction

In [85]:
def predict(summaries, inputVector):
    probabilities = calculateClassProbabilities(summaries, inputVector)
    bestLabel, bestProb = None, -1
    for classValue, probability in probabilities.items():
        if bestLabel is None or probability > bestProb:
            bestProb = probability
            bestLabel = classValue
    return bestLabel
In [86]:
def getPredictions(summaries, testSet):
    predictions = []
    for i in range(len(testSet)):
        result = predict(summaries, testSet[i])
        predictions.append(result)
    return predictions

get accuracy

In [87]:
def getAccuracy(testSet, predictions):
    correct = 0
    for x in range(len(testSet)):
        if testSet[x][-1] == predictions[x]:
            correct += 1
    return (correct/float(len(testSet)))*100.0
In [102]:
def main():
    filename = 'pima-indians-diabetes.csv'
    splitRatio = 0.7
    dataset = loadCsv(filename)
    trainingSet, testSet = splitDataset(dataset, splitRatio)
    print('Split {0} rows into train = {1} and test = {2} rows'.format(len(dataset),len(trainingSet),len(testSet)))
    #prepare model
    summaries = summarizeByClass(trainingSet)
    #test model
    predictions = getPredictions(summaries, testSet)
    accuracy = getAccuracy(testSet, predictions)
    print('Accuracy: {0}%'.format(accuracy))
 
main()
Split 768 rows into train = 537 and test = 231 rows
Accuracy: 65.36796536796537%
In [103]:
#
In [104]:
from sklearn import datasets
from sklearn import metrics
from sklearn.naive_bayes import GaussianNB
 
In [110]:
dataset = datasets.load_iris()
In [111]:
model = GaussianNB()
model.fit(dataset.data, dataset.target)
Out[111]:
GaussianNB(priors=None, var_smoothing=1e-09)
In [112]:
model = GaussianNB()
model.fit(dataset.data, dataset.target)
 
Out[112]:
GaussianNB(priors=None, var_smoothing=1e-09)
In [113]:
expected=dataset.target
predicted=model.predict(dataset.data)
In [114]:
print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
              precision    recall  f1-score   support

           0       1.00      1.00      1.00        50
           1       0.94      0.94      0.94        50
           2       0.94      0.94      0.94        50

    accuracy                           0.96       150
   macro avg       0.96      0.96      0.96       150
weighted avg       0.96      0.96      0.96       150

[[50  0  0]
 [ 0 47  3]
 [ 0  3 47]]
In [ ]:
 

Comments

Popular posts from this blog

Interview Preparation Kit

Dinosaurus_Island_Character_level_language_model

How to crack the interviews and get a decent job?