Edureka machine learning codes
In [5]:
import sys
print("python: {}".format(sys.version))
import scipy
print("scipy: {}".format(scipy.__version__))
import numpy
print("numpy: {}".format(numpy.__version__))
import matplotlib
print("mat: {}".format(matplotlib.__version__))
import pandas
print("pandas: {}".format(pandas.__version__))
import sklearn
print("sklearn: {}".format(sklearn.__version__))
In [9]:
import pandas
from pandas.plotting import scatter_matrix
import matplotlib.pyplot as pit
from sklearn import model_selection
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
In [10]:
url="https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
names=['sepal-length','sepal-width','petal-length','petal-width','class']
dataset = pandas.read_csv(url,names=names)
In [11]:
print(dataset.shape)
In [13]:
print(dataset.head(30))
In [14]:
print(dataset.describe())
In [16]:
print(dataset.groupby('class').size())
In [23]:
dataset.plot(kind="box", subplots = True, layout=(2,2))
pit.show()
In [25]:
dataset.hist()
pit.show()
In [26]:
scatter_matrix(dataset)
pit.show()
In [28]:
array = dataset.values
X=array[:,0:4]
Y=array[:,4]
validation_size=0.20
seed=6
x_train, x_test, y_train, y_test= model_selection.train_test_split(X,Y,test_size=validation_size,random_state=seed)
In [42]:
seed=6
scoring ='accuracy'
In [48]:
models=[]
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('Knn', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
models.append(('SVM', SVC()))
results=[]
names=[]
for name, model in models:
kfold=model_selection.KFold(n_splits=13, random_state=seed)
cv_results=model_selection.cross_val_score(model,x_train,y_train,cv=kfold,scoring=scoring)
results.append(cv_results)
names.append(name)
msg= "%s: %f (%f)" % (name,cv_results.mean(), cv_results.std())
print(msg)
Comments
Post a Comment